
RESTFUL SERVICES – APPLYING THE REST ARCHITECTURAL STYLE

A THESIS

SUBMITTED ON 14th OF OCTOBER, 2011

TO THE DEPARTMENT OF INFORMATION TECHNOLOGY OF THE SCHOOL OF

COMPUTER & INFORMATION SCIENCES

OF REGIS UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF MASTER OF SCIENCE IN

SOFTWARE ENGINEERING

BY

Brian C. Henry

APPLYING THE REST ARCHITECTURAL STYLE 2

Abstract

REST is an architectural style for building modern Web based software that in recent

years has gained popularity as a way to build distributed software services known as REST

services or RESTful services. The increasing demand to provide open Application Programming

Interfaces (API’s) has ushered in a new wave of distributed software using the RESTful

approach. Companies such as Twitter and Netflix have adopted the architectural style to create

public API’s. Software designers and engineers of next-generation distributed software will

have to decide if they want to follow this architectural style. In order to make informed

decisions, individuals will need to understand REST and its strengths and weaknesses, and how

to apply it to their distributed software systems.

APPLYING THE REST ARCHITECTURAL STYLE 3

Table of Contents

Abstract ... 2

Table of Contents .. 3

List of Figures and Tables... 5

RESTful Services – Applying the REST Architectural Style ... 6

The World Wide Web ... 6

Representational State Transfer .. 8

Service-Oriented Architecture .. 10

Web Services and REST Services .. 12

Background and Rationale .. 15

Research Objectives .. 16

Literature Review.. 17

Web Standards .. 17

Service Orientated Architecture .. 18

REST Foundations .. 20

System Description ... 22

Application Scoring Example ... 23

High-Level Design .. 25

System Architecture & Design ... 27

3 -Tier Architecture... 30

Middle Tier ... 35

Data Access Layer ... 37

APPLYING THE REST ARCHITECTURAL STYLE 4

Business Logic Layer .. 38

Service Layer ... 39

Consuming REST Resources .. 42

Windows Communication Foundation ... 43

Endpoints and Messaging ... 45

Security ... 48

Measuring REST ... 49

Conclusion .. 51

References ... 53

APPLYING THE REST ARCHITECTURAL STYLE 5

List of Figures and Tables

Figure 1. NFLPickem Application Screenshot ….……….……………………….…23

Figure 2. NFLPickem Page Flow Diagram ….……….……………………….…26

Figure 3. Common Application Architecture ….……….……………………….…27

Figure 4. Original 2-Tier Architecture Diagram ….……….……………………….…29

Figure 5. 3-Tier Architecture Diagram ………….……………….……….…31

Figure 6. Entity Relationship Diagram ………….……………….……….…33

Figure 7. Data Tier Database Object Diagram ………….……………….……….…34

Figure 8. Middle Tier Layers and Data Tier Interaction ………….……………….……….…36

Figure 9. Business Layer consumed by the Service Layer ………….……………….……….…38

Figure 10. Decoupled Service Contract UML Diagram ………….……………….……….…39

Figure 11. Service Layer Resource Operations Diagram ………….……………….……….…40

Figure 12.WeekResource Operation Code Listing ………….……………….……….…41

Figure 13. Simple REST Client Console Application ………….……………….……….…42

Figure 14. WCF REST Framework ………….……………….……….…43

Figure 15. WCF Service Endpoints ………….……………….……….…45

Figure 16. HTTP Message Routing Diagram ………….……………….……….…46

Figure 17. Week Resource Service Interface Code Listing ………….……………….……….…47

Figure 18. The Richardson Maturity Model ………….……………….……….…49

Table 1. Eight Service-Orientation Design Principles ………….……………….……….…12

Table 2. Example Week in the NFL ………….……………….……….…24

Table 3. Scoring Example of Two Players ………….……………….……….…24

Table 4. Player Rankings Chart ………….……………….……….…25

APPLYING THE REST ARCHITECTURAL STYLE 6

RESTful Services – Applying the REST Architectural Style

Representational State Transfer (REST) was originally introduced by Roy T. Fielding,

who is Principal Scientist at Adobe Systems Incorporated and formerly Chief Scientist at Day

Software. Fielding is also the principle author of the Hypertext Transfer Protocol (HTTP). In

his 2000 Doctoral Dissertation, Fielding explains that REST is an architectural style for

distributed hypermedia systems. REST is a hybrid style derived from several network based

architectural styles, combined with constraints that define a uniform connector interface

(Fielding, p. 76). Fielding’s Dissertation covers the core research for understanding modern

network based software through architectural styles. His research is significant in today’s

network based systems and architectures.

The World Wide Web

The World Wide Web Consortium (2011) defines the Web as, “an information space in

which the items of interest, referred to as resources, are identified by global identifiers called

Uniform Resource Identifiers” (URI) (p. 1). The Web has changed the way software is built and

delivered. The Web is a vast ecosystem of web pages, web applications, and web services.

Servers, protocols, and addressable resources power the Web. Each resource on the Web can

have one or more Uri’s, which means that multiple URI’s can point to the same resource. The

URI provides the protocol to use and the address of the resource. In the past, URI was called a

Uniform Resource Locator (URL). According to Webber, Parastatidis, and Robinson (2010),

“The term URL is obsolete, since not all URI’s need to convey interaction-protocol-specific

information (p. 7). The term URL however, is entrenched in mainstream Web lingo; the two are

used interchangeably.

APPLYING THE REST ARCHITECTURAL STYLE 7

One of the key enabling constraints of REST is the uniform interface, which generalizes

all communications through a single interface. The HTTP protocol is the most ubiquitous form

of a uniform interface and HTTP is the most commonly used protocol on the Web. Most often,

REST is applied to the HTTP protocol, although it is not bound to the protocol. Webber,

Parastatidis, and Robinson (2010) stated, “In theory, HTTP is just one of the many interaction

protocols that can be used to support a web of resources and actions, but given its pervasiveness

we will assume that HTTP is the protocol of the Web” (p. 11). The Web and HTTP were

designed to be stateless, which means that nothing is stored on the server between requests. The

concept of per-client state on the server is not part of the design of HTTP or the Web. (Flanders,

2008, p. 2). There are ways to manage state, but in order to do so; all of the information to

process the request must be included in the request.

When a request is made on the Web, a resource is being requested that represents the

primary abstraction of “the data” being requested. A resource can be any form of digital data

such as a document, image, XML, or an HTML file. When retrieving a resource over a uniform

interface, the data returned is a representation of the resource state. Fielding (2000) explains in

his dissertation that, “A resource is a conceptual mapping to a set of entities, not the entity that

corresponds to the mapping at any particular point in time” (p. 88). In order to locate a resource

on the Web, the resource must have one or more URI’s. Each resource will have one or more

representations, which is the media type of the data that ultimately represents the resource.

On the Web, the most ubiquitous resource representation is the HTML media type.

When making an HTTP request to retrieve http://www.google.com, a representation for that URI

is returned the form of HTML. Some Web applications return different representations based on

information in the HTTP header or the URI. Evidence of this occurs when accessing a Web page

http://www.google.com/

APPLYING THE REST ARCHITECTURAL STYLE 8

from a mobile device that returns a slightly different page than the one that is returned to a

regular browser. Special mechanisms in HTTP, known as headers, give Web resource providers

and consumers power and control over the way the resource is represented.

Representational State Transfer

Fielding’s original work did not focus on specific technologies for implementing and

applying the REST architectural style. Fielding made this point when he explained that REST

does not restrict communication to a particular protocol (Fielding, 2002, p. 100). That said, most

practitioners will likely associate REST with HTTP as the official REST protocol. In 2002,

while working as chief scientist at Day Software, Fielding’s article, “Principled Design of the

Modern Web Architecture,” was published. He co-authored the article with Richard Taylor.

The Fielding and Taylor (2002) article re-introduces the REST architectural style and describes it

as follows:

…developed as an abstract model of the Web architecture and used to guide our

redesign and definition of the Hypertext Transfer Protocol and Uniform Resource

Identifiers (URI). We describe the software engineering principles guiding REST

and the interaction constraints chosen to retain those principles, contrasting them

to the constraints of other architectural styles (p. 150).

Furthermore, Fielding’s research explains how the communication protocol layer, namely HTTP,

is used in REST. HTTP is the primary application-level protocol of the Web and the only

protocol designed specifically for the transfer of resource representations, which are the primary

abstractions of data. (Fielding & Taylor, 2002, p. 137).

REST uses a set of design principles known as constraints. Combined together, these

constraints are used to derive the architectural style. In Fielding’s (2000) Doctoral Dissertation,

APPLYING THE REST ARCHITECTURAL STYLE 9

Fielding explains that, “REST is a derived architectural style that is based on set of constraints

that are applied to elements within the architecture” (p. 76). Fielding identifies six constraints in

Chapter 5 of his Dissertation for deriving REST through specific constraints. The six constraints

are client-server, stateless, cache, uniform interface, layered system, and the code-on-demand

constraint.

1. Client-Server is a separation of concerns between the user interface and the back-end

server components that are responsible for retrieving and storing the data. The

separation of client and server has enabled the Web to allow clients and servers to

evolve on a mass scale.

2. Stateless requires that communication must be stateless in nature and that everything

needed to execute the request must be included in the request itself and not rely on

any server session state. All session state must be kept entirely by the client

(Fielding, 2002, p. 78). The stateless constraint definitely has a performance trade-off

since no application state is shared on the server. Session state also creates difficulty

with consistent application behavior since it relies heavily on the client correctly

handling the semantics across differing client and server versions.

3. Cache improves network performance, permitting the client in a client-server

interaction to cache data that is specifically marked as cacheable by the server. The

advantage of adding cache constraints is that they have the potential to eliminate

some interactions, improving efficiency, scalability, and user perceived performance

by reducing the average latency of a series of interactions (Fielding, 2002, p. 80).

The trade-off is that as the amount of data that is cached grows, the higher the

likelihood that some portion of the cached data is in a stale state.

APPLYING THE REST ARCHITECTURAL STYLE 10

4. Uniform Interface is perhaps the most important constraint. The inform interface is

the key enabler of the mass-scaling capabilities of the Web. The uniform interface

constraint consists of four sub-constraints, identification of resources; manipulation of

resources through representations; self-descriptive messages; and hypermedia as the

engine of application state (Fielding, 2002, p. 82). The Uniform Interface constraint

is a key differentiator especially when we compare REST services to Web services,

which will be explained later in the Web services and REST services section.

5. Layered System constraint supports Internet-scale requirements. The constraint

makes it possible to establish client and server caches to improve performance over

network intermediaries. Layering allows for the creation of resources that transform,

protect, and expose or expand legacy systems. Most modern software architectures

will express a set of logical and possibly physical layers. The concepts are similar in

that each layer can establish policy, hide complexity, and may actually be a façade to

larger subsystems.

6. Code-On-Demand is an optional constraint that allows for the consumption or

processing of server provided code on the client. The constraint is accomplished

through scripts or applets; modern browsers support code-on-demand through

JavaScript.

Service-Oriented Architecture

Service-Oriented Architecture (SOA) is the supporting architecture that enables a system

to provide loosely coupled services to remote consumers or clients. The goal of SOA is to

supply loosely coupled software services that are interoperable. Thomas Erl, in his (2009) book,

SOA Design Patterns, explains that SOA represents:

APPLYING THE REST ARCHITECTURAL STYLE 11

…an architectural model that aims to enhance the agility and cost-effectiveness of

an enterprise while reducing the burden of IT on the over-all organization.

Service orientated architecture reduces the burden of the reducing information

technology by positioning services as the primary way that solution logic is

represented (Erl, p. 37).

 Erl explains that the term SOA has been used loosely causing confusion about its exact

meaning. An SOA is the choice of tools, patterns, practices, API’s, and supporting infrastructure

that make up the “system.” The level of complexity of the system is correlated to the size of

problem and the degree of maturity that is desired. There countless ways to approach SOA and

there are many difficult decisions to make and challenges to overcome. One company may

decide to build an SOA that only runs in a secure domain and as a result will have very few

security concerns. On the other hand, Software as a Service (SaaS) vendors may expose

distributed services on the Internet, and will require a more sophisticated security model.

A service can be implemented as either a component, Web Service, or a REST Service

(Erl, 2009, p. 44). In these terms, a component is a piece of the software system that is

composed to be part of the distributed system allowing it to be invoked. A Web Service is

expressed by a contract, also called the Web Services Definition Language (WSDL) definition.

The WSDL describes the service in terms of its operations and data using a special XML format.

WSDL follows the principle of a service contract that is separate from its implementation.

Commonly, the term Web services, is used to generically to encompass both Web services and

REST services. Erl believes that Web services and REST services are of two distinct classes.

The first class is Web services that are synonymous with WSDL and WSDL-like approaches.

REST services are a separate class based on the REST architectural style.

APPLYING THE REST ARCHITECTURAL STYLE 12

SOA, much like REST is based on patterns, practices, and architectural styles. Erl

recognizes eight design principles of service-orientation:

Table 1

 Eight Service-Orientation Design Principles

Standardized Service

Contract

Services within the same service inventory comply with the same

contract design standards.

Service Loose Coupling Service contracts impose low consumer coupling requirements and

are themselves decoupled from their surrounding environment.

Service Abstraction Service contracts only contain essential information and about

services are limited to what service contracts are published.

Service Reusability Services contain and express agnostic logic as reusable enterprise

resources.

Service Autonomy Services exercise a high level of control over their underlying

runtime execution environment.

Service Statelessness Services minimize resource consumption by deferring the

management of state information when necessary.

Service Discoverability Supplementing services with communicative meta data by which

successful service discoverability effectively and interpretation

occurs.

Service Compensability Services are effective composition participants, regardless of the

size and complexity of the composition.

From, Thomas Earl (2009). Eight Service-Orientation Design Principles. Pearson Education:

Boston.

While an SOA is not required to address all of these principles, you certainly can use these

principles to measure the SOA maturity level. These principles can ultimately guide modern

service-oriented architectures and what type to create.

Web Services and REST Services

The previous section explained that a service could be a component, Web service, or

REST service. The following section focuses on comparing and contrasting Web services and

REST services. SOAP is considered synonymous with the term Web service. SOAP originally

stood for “Simple Object Access Protocol” when it was part of the original specification for

APPLYING THE REST ARCHITECTURAL STYLE 13

SOAP version 1.1. With the current version of 1.2, it is simply a protocol called, SOAP.

According to the World Wide Web Consortium (2007), they define SOAP as:

A lightweight protocol intended for exchanging structured information in a

decentralized, distributed environment. It uses XML technologies to define an

extensible messaging framework providing a message construct that can be

exchanged over a variety of underlying protocols. The framework has been

designed to be independent of any particular programming model and other

implementation specific semantics (2007).

Web services and REST services both run on the HTTP protocol, although Web services

commonly use other transport protocols. When comparing the two types, it comes down to the

purpose the HTTP protocol plays and how it is used. Web services tend to focus on HTTP as

merely a transport protocol, an act commonly referred to as “tunneling.” Tunneling occurs when

the SOAP protocol runs on the back of HTTP, or when it tunnels through using this protocol.

REST services proponents prefer to use HTTP as an application protocol. According to Fielding,

(1999), “The HTTP protocol is often mistaken for a transport protocol; HTTP is really an

application protocol” (p. 47).

 Web services are focused on expression through contracts or metadata. The metadata

contains the operations and data that the service exposes and exchanges. The WSDL serves the

purpose of providing the contract. The WSDL can come first when a “contract-first” approach is

applied. The contract first approach requires that the entire XML markup be designed before the

implementation or code is written that adheres to the contract. The reverse process is also widely

used which is called, “code-first” where the code is written first and then the metadata is

APPLYING THE REST ARCHITECTURAL STYLE 14

extracted or reverse-engineered. In either case, the WSDL metadata serves as the blueprint for

the Web service consumer.

The building of the WSDL, interpreting it, and writing the code, requires tooling and

processing overhead. Tooling and processing happens to be the key argument against SOAP as

compared to REST. “Interface complexity can occur when a system is composed of many

unique interfaces where each different interface effectively establishes a protocol with its own

nuances and semantics” (Vinoski, 2002, p. 91). As the number of the interfaces and versions of

the interfaces grow, it becomes increasingly difficult to manage, leading to increased complexity.

REST services boast the use of the uniform resource interface constraint. Therefore,

instead of each service having a unique interface as in the case of Web services, each service has

the same uniform interface. For a client to interact or consume a Web Service it must understand

the unique interface contract as well as the data contract. However, in the case of REST, only

the data contract must be understood since the interface is always the same (Vinoski, 2007, p.

83). This is important when it comes to scalability of a large distributed system. Managing

changes to unique interfaces presents a significant scaling problem.

REST and SOAP each has strengths and weaknesses, with advocates on both sides. Most

of the efforts over the last decade has been focused on SOAP Web services and enhancing them.

The recent enhancements of SOAP have focused on adding specifications to WDSL and UDDI

to extend the language to support extensions such as security, encryption, federation, reliable

messaging, and error handling. These specifications are loosely referred to as the WS-*

specifications. Navigating the array of specifications is difficult and as the list grows, it becomes

increasingly apparent that only companies like Microsoft, Oracle, and IBM have the resources to

build the tooling capable of handling the complex set of protocols and specifications.

APPLYING THE REST ARCHITECTURAL STYLE 15

Background and Rationale

REST services are a relatively new way to build services. During the last five years,

REST has begun to garner more attention as a way to build distributed software. Web services

have constituted the majority of distributed software services built during the last 10-15 years.

The divide in maturity is significant and is partially why REST services are viewed a solution for

simple services. A considerable amount of work has gone into the complex WS-* specifications

and standards. The WS-* specifications have addressed difficult and tricky areas such as policy,

discovery, and security. With REST, policy, discovery, and security are simply not as mature.

While the lack of maturity may appear to be a weakness, many will argue that this is strength of

REST.

 One problem with the complex SOAP WS-* specifications is that only an elite few have

the resources and inclination to understand them and build the tooling required to effectively use

the technology. On the other hand, most of the frameworks that currently support REST focus

on using and interpreting the HTTP protocol, and forwarding the requests along to the correct

handler. The URI scheme, data formats, hypermedia controls, and supporting architecture are

part of the creative process by the engineering team.

Like many software engineering problems, complex demands require equally complex

solutions. The side effect of complexity is that we give up control attempting to adhere to

standards and specifications to meet our complex needs. Complexity is what has driven the

advancements in SOAP through WS-* specifications. While the WS-* specifications are

powerful and solve difficult problems, there has been some backlash to the complexity they have

introduced. Many people in the distributed software community are looking for innovations and

simpler approaches to distributed software. People are looking for simpler ways to access

APPLYING THE REST ARCHITECTURAL STYLE 16

resources on the network without interpreting so many complicated specifications. With REST,

we have a dichotomy of principle and practice. On one hand, we seek the simplicity and raw

power of REST, and on the other, we want standards and frameworks to do the “heavy lifting”

for us. Within this contradiction, lies an opportunity for advancement of REST, as a science for

building distributed software.

With REST, complex areas such as security and policy are sparsely covered and often

times require our own inventions. There are however significant efforts to develop new

frameworks and technologies to address these complexities. Will the software engineering

community have an appetite for newer standards and specifications, or will people reject

standardization efforts? Regardless of the standardization efforts, most experts agree that REST

services will take prominent role in future service-oriented architectures. The theory behind

REST is well documented and the principles are straightforward. The application of the theory

and principles is where we see a good opportunity for growth in the future.

Research Objectives

The primary objective of the research is to apply a design-science research approach to

the building and the analyzing of RESTful services software architecture. The design-science

approach will provide an evidenced based foundation of REST through practical application.

The resulting software architecture should be complete in design and rationale as it applies to the

original REST Constraints (See Figure 1). The design will apply modern software engineering

patterns where appropriate, such as façade, dependency injection, and factory. The utility and

evaluation of these artifacts is for and by the community of researches and students at Regis

University.

Following are the research objectives:

APPLYING THE REST ARCHITECTURAL STYLE 17

1. System architecture and design – Design a layered software architecture to

support REST services. Represent the architecture through a set of design

artifacts.

2. Software artifact – Based on the system architecture and design, create a

software artifact that expresses the design and overall architecture.

3. Software validation – Validate the architecture, design, and software artifact, by

deploying it to server(s) in a production-like environment.

4. Software evaluation – Evaluate the architecture, design, and software artifact

against REST constraints and principles.

 Literature Review

 This literature review research recognizes three primary types of literature. The first type

is technical specifications, which are the specifications that drive the Web and the advisory

groups that create and govern those standards. The next type is academic research, which is

inclusive of all published academic journal articles. The last types are published books that

represent authoritative sources for applying technology through modern software engineering

practices, patterns, frameworks, and technologies. The technical specifications provide the

standards and protocols. The academic works provides insights into past, current, and future

trends. Moreover, the published books provide valuable insight into how to apply the

technology.

Web Standards

The most important governing group of the Web is the World Wide Web

Consortium (W3C). The W3C is an international community that establishes and

publishes Web standards. The Web is defined by W3C as, “an information space in

APPLYING THE REST ARCHITECTURAL STYLE 18

which the items of interest, referred to as resources, are identified by global identifiers

called Uniform Resource Identifiers (p. 7). The W3C's primary activity is to develop

protocols and guidelines that ensure long-term growth for the Web. The W3C defines

protocols, standards, and specifications that make the World Wide Web work (World

Wide Web Consortium, 2011, p. 11). Tim Berners-Lee founded the consortium in 1994.

Berners-Lee is credited with being the inventor of the Web when he wrote a proposal in

1989 called, The World Wide Web (World Wide Web Consortium, 2011, p. 11). Berners-

Lee subsequently wrote the first Web browser, first Web page, and authored the first

specifications for URLs, HTTP, and HTML. In terms of an authoritative and seminal

source for technical specifications for the Web, the W3C is the standard.

Service Orientated Architecture

Web services standards have been normalized over the last five to six years.

Furthermore, much of the recent academic research is focused on many of the difficult aspects of

building, understanding, and maintaining service-oriented architectures. As the enterprise

requirements increase, so does the difficulty in maintaining and building the systems.

Maintaining systems includes areas such as governance, design patterns, and enterprise

architecture.

 Governance is an important aspect of building an SOA. The ACM article, “A Lifecycle

approach to SOA Governance,” presents research for applying governance to SOA. The authors

propose a governance lifecycle with phases that cover strategy, organizational alignment, service

portfolio, and policies (Schepers, Lacob, & Van Eck, 2008). As we move past the simple Web

services that are touted as an example of how simple building services are; we need better and

more sophisticated ways to govern them.

APPLYING THE REST ARCHITECTURAL STYLE 19

 Design patterns are a useful solution for recurring software design problems. The

Institute of Electrical and Electronics Engineers (IEEE) Software article, “Using Architectural

Patterns and Blueprints for Service-Oriented Architecture,” examines SOA from the perspective

of architectural patterns. The author, Michael Stal (2006), made a good point when he stated,

“SOA in its fundamental core does not simply define an implementation technology but an

architectural solution for a specific design problem in a given context—with XML Web services

being just one possible implementation technology” (p. 54).

Building service-orientated architectures requires design and implementation artifacts to

be created and maintained across the spectrum of the business. With the distinct complexities of

SOA, we need better ways to manage the information, architectures, and the services that make

up the system. Differing types of artifacts, and where they reside in the framework, depends on

the needs of organization and the importance level. For a large enterprise with thousands of

services, a governance process would be critical. Enterprises that have only a handful of services

are less concerned with governance. Enterprise Architecture (EA) is designed to address this

problem of complexity. In 1987, Zachman published an article in the IBM Systems Journal

titled, “A Framework for Information Systems Architecture.” In the Zachman (1987) article,

Zachman framed the problem by stating, “With increasing size and complexity of the

implementation of information systems, it is necessary to use some logical construct or

architecture for defining and controlling the interfaces and the integration of all of the

components of the system” (p. 23). A number frameworks or architectures are in use today, such

as the Zachman Framework, The Open Group Architecture Framework (TOGAF), and the

Federal Enterprise Architecture (FEA).

APPLYING THE REST ARCHITECTURAL STYLE 20

When building service orientated architectures, the best sources are often published

books and articles by industry authors. Over the past decade, there are literally hundreds of

books published on the topic of SOA. Thomas Erl is the bestselling author on the subject for the

past five years. There are over 140,000 printed copies of Erl’s seven published books. Erl’s

books have been formally endorsed by senior members of major information technology

organizations such as IBM, Microsoft, Oracle, Intel, IEEE, HL7, MITRE, SAP, CISCO, and HP

(Thomas Erl, p. 1). Erl’s books cover service orientated architecture subjects such as

governance, design principles, contract design, versioning, and design patterns. Erl continues to

be recognized as a leading authoritative author with three new books that will be released in

2011. These books are titled, “SOA with REST,” “Modern SOA Infrastructure,” and “SOA with

Java.”

REST Foundations

As explained in the Introduction, Representational State Transfer is an architectural style

introduced by Roy T. Fielding in 1994. In 2000, at the University of California, Irvine Fielding

presented his Dissertation titled, “Architectural Styles and the Design of Network-based

Software Architectures.” In 2002, Roy Fielding and Richard Taylor published an article titled,

“Principled Design of the Modern Web Architecture.” The article continues to build on the

REST architectural style and begins to explain how it relates to the HTTP protocol. The Fielding

and Taylor (2002) article concluded that, “REST has served as both a model for design guidance

and as an acid test for architectural extensions to the Web protocols” (p. 147). These papers by

Fielding and Taylor are the seminal sources for this research.

In recent years, REST has been linked to REST services or RESTful services. While this

approach to developing distributed software is gaining in popularity, and it is considered a way

APPLYING THE REST ARCHITECTURAL STYLE 21

to build simpler or less complex services. One of the persistent criticisms of REST has been the

relative lack of supporting frameworks that enforce its style and basic design principles

(Erenkrantz, Gorlick, Suryanarayana, & Taylor, 2007, p. 262). REST is not a technology,

protocol, or a specification, and there is not an exact set of accepted compliance tests to

determine if a system meets “RESTful” compliance.

While it is true that REST is not a technology, the concept is understood that the services

use HTTP not merely as a transport protocol, but also as an application protocol. Understanding

this, helps moves us closer to a set of guidance for the application of REST. The next evolution

of REST will likely involve standardization of tools, frameworks, patterns and practices.

Building rich service-oriented architectures requires specialized technologies and application

frameworks. As we move towards a practical application of REST, we can significantly improve

our design by utilizing the modern tools, frameworks, patterns, and practices. Moving forward,

the research will use many of the available modern tools, frameworks, patterns, and practices.

One of the best sources for practical application and examples of REST is titled, “REST

in Practice,” by Jim Webber, Savas Parastatidis, and Ian Robinson. The book begins to layout

the foundation for understanding how to apply REST. The book uses a fictitious coffee company

called, Restbucks, named after Starbucks, to frame problems and solutions. The book examines

REST from a variety of technological perspectives. The authors do a good job of staying away

from technology biases by mixing a variety of Java and .NET solutions to the posed problems.

Their approach helps the authors illustrate RESTful principles without getting too deep into the

technology. The book provides readers with the core principles and the technology jump-start;

however, does not provide the technical depth that people need to build an entire system in .NET

or Java.

APPLYING THE REST ARCHITECTURAL STYLE 22

While there is not a definitive guide on how to build a REST service-oriented

architecture, there is a fair number of recent books available on the subject in a variety of

programming languages. These books will help to supply the foundation for one of the primary

objectives, which is to build a REST services software artifact using .NET technologies. Some

of the tools, patterns, practices, and frameworks used come from Jon Flanders’ book, “RESTful

.NET” as well as Kenn Scribner and Scott Seelly’s book, “Effective REST services via .NET.”

These books are among the best available for applying REST using .NET technology.

System Description

For purposes of this research, an online system called NFLPickem was created.

NFLPickem is a Web application where users compete weekly by selecting the winners of NFL

football games. The system has a user interface that allows users to log on, submit picks, change

picks, and view standings in their league. The application uses a special weighting system that

requires a player to not only choose the winner of each game, but also rank their selection against

all of the other games for that week. Each week, all of the games are presented and the players

make their selections (See Figure 1). After the player makes a selection for the winner of each

game, he or she will subsequently rank the selection as well. Once a game starts, the pick and

selected rank cannot be changed.

APPLYING THE REST ARCHITECTURAL STYLE 23

Figure 1. NFLPickem Application Screenshot by, Brian Henry (2011)

Application Scoring Example

Each player is scored weekly and cumulatively for the season, and the player is ranked in

the league based on his or her cumulative score. The scoring is based on the two-dimensional

pick system. The first dimension is to select the game winner, and the second dimension is the

weight (ranking) applied to that selection. The ranking essentially allows the player to set a

weight based on his or her confidence in a team’s ability to win. The example below (Tables 2

and 3) illustrates how the scoring algorithm calculates the score for a week. Each pick is

subtracted or added to the overall score based on the ranking applied to the pick.

APPLYING THE REST ARCHITECTURAL STYLE 24

Table 2

Example Week in the NFL

Dolphins 17

Steelers 28

Ravens 27

Buccaneers 0

Bears 26

Packers 0

Falcons 20

Panthers 6

Vikings 19

Redskins 16

Jets 23

Titans 16

Bills 17

Patriots 19

Cowboy 17

Jaguars 24

Broncos 10

Rams 18

Eagles 24

Texans 10

Bengals 23

Chiefs 10

Saints 19

Browns 14

Colts 26

Giants 21

49ers 27

Cardinals 34

Chargers 27

Raiders 0

Example Week in the NFL By. Table by Brian Henry (2011)

Table 3

Scoring Example of Two Players

Rank Joe Pick Joe Points Sally Picks Sally Points

16 Chargers 0+16=16 Redskins 0-16= -16

15 Eagles 16+15=31 Panthers -16-15=-31

14 Vikings 31+14=45 Packers -31-14=-45

13 49ers 45-13=32 Ravens -45+13=-32

12 Rams 32+12=44 Steelers -32+12=-20

11 Panthers 44-11=33 Jets -20+11=-9

10 Colts 33+10=43 Bills -9-11=-20

9 Cowboys 43+9=52 Jaguars -20-9=-29

8 Bears 52+8=60 Broncos -29-8=-37

7 Browns 60-7=53 Texans -37-7=-44

6 Patriots 53+6=59 Raiders -44-6=-50

5 Ravens 59+5=64 Cardinals -50+3=-47

4 Chiefs 64+4=68 Giants -47-4=-51

3 Jets 68+3=71 Browns -51-3=-54

2 Steelers 71+2=73 Chiefs -54-2=-56

Points 73 -56

Scoring Example of Two Players. Table by Brian Henry (2011)

The scores are then calculated and stored weekly. Overall points are awarded weekly for each

player. The cumulative scores are found in the “Reg” column of Table 3 below. The “Post”

column is the post season, followed by each week’s score.

APPLYING THE REST ARCHITECTURAL STYLE 25

Table 4

Player Rankings Chart (Full NFL Season)

 Reg Post 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Joe 903 12 56 36 52 27 -13 69 25 24 110 33 94 78 70 72 76 16 78

Sally 807 28 48 54 36 43 -21 49 31 36 64 9 92 80 56 80 60 22 68

Ron 799 44 42 28 40 9 -25 43 67 16 100 17 66 74 78 96 50 26 72

John 789 -4 48 16 34 51 -21 65 21 -2 64 17 80 90 78 76 68 26 78

Jeff 695 -4 60 18 32 39 -59 63 31 16 90 7 68 82 78 56 42 10 62

Abby 673 -24 40 28 10 31 -15 49 59 4 48 -31 118 66 60 70 32 6 98

Chris 653 -16 2 10 38 59 -45 65 -7 32 76 -9 114 64 70 58 38 14 74

Sandy 583 44 64 32 34 27 -25 17 45 16 46 -47 80 48 76 72 18 6 74

Lorri 537 16 10 48 10 25 -33 51 13 42 56 -53 76 104 66 40 14 4 64

Brad 493 4 16 24 36 41 -23 -5 41 -14 58 5 34 54 70 64 46 -8 54

Player Rankings Chart. Table by, Brian Henry (2011)

High-Level Design

NFLPickem is a Web application built using Microsoft’s ASP.NET and SQL Server.

ASP.NET is a Web application framework for building sophisticated web applications.

ASP.NET provides all of the tools necessary to build enterprise class Web applications. SQL

Server is Microsoft’s relational database platform. It uses the standard ANSI-SQL query

language and a proprietary query language called T-SQL.

NFLPickem consists of set of ASP.NET pages that support the various functions of the

system. Authorization of the system is based on three system roles (user role, player role, and

administrative role). These roles are assigned to the users to control access to the different parts

of the system. The roles and Web page flow are shown in a diagram in Figure 2. In addition to

providing the page flow and authorization, Figure 2 depicts the major functions of the system.

Following are the core features of the system:

APPLYING THE REST ARCHITECTURAL STYLE 26

1. Rules Page – The page describes the rules of the game and the system.

2. Games Page – A page that displays all of the games played for a given week,

including the winner and score of the game.

3. Players Page – A page that displays all of the players that are in the league.

4. Picks Page – The page is for viewing, updating, and saving game picks.

5. Standings Weekly – The page displays the individual scores of every player for a

given week.

6. Standings Overall – The page is for displaying the overall score of every player for

the entire season.

7. Admin Games – The page is for creating, updating, and saving the games each week.

8. Administrative Weeks – The page is for updating the weeks in a season, primarily

for activating, inactivating, and scoring a week.

9. Administrative Users – A gage for updating users.

Figure 2. NFLPickem Page Flow Diagram by Brian Henry (2011)

Home

Games

Rules

Admin

Picks
Standing

s

Weekly Overall

Games

Weeks

Users

Player
Info

All
Players

Legend

User Player Admin

APPLYING THE REST ARCHITECTURAL STYLE 27

System Architecture & Design

All software has an architecture and design. The design may be formal with well-defined

artifacts, or informal with little or no design artifacts. The design may simply exist in the

consciousness of the original creator. The design is the set of decisions that together make up

“the system.” These decisions include which tools, patterns, practices, frameworks to use, and

how the code is written. The design typically includes artifacts such as user stories, UML

diagrams, UI templates and graphics, architecture documentation, and specifications. These

artifacts are electronic and come in the form of documents, models, drawings, and sketches. The

goal of the design is to express the system to the intended audience.

Figure 3. Common Application Architecture Guide 2

nd
 Edition (Microsoft, 2009, p. 10).

APPLYING THE REST ARCHITECTURAL STYLE 28

Good software is based on design principles, patterns, and practices. The choice of

which to use and how they work together is the software architecture. Philippe Kruchten, Grady

Booch, Kurt Bittner, and Rich Reitman derived and refined a definition of architecture based on

work by Mary Shaw and David Garlan (Garlan & Shaw, 1996). Shaw and Garlan (1996) define

architecture as follows:

Software architecture encompasses the set of significant decisions about the

organization of a software system including the selection of the structural

elements and their interfaces by which the system is composed; behavior as

specified in collaboration among those elements; composition of these structural

and behavioral elements into larger subsystems; and an architectural style

that guides this organization. Software architecture also involves functionality,

usability, resilience, performance, reuse, comprehensibility, economic and

technology constraints, tradeoffs and aesthetic concerns (p. 47).

 Good software also balances the short-term requirements against future needs.

Architectural balance is achieved through a variety of abstraction and organization techniques.

The underlying architecture of the system establishes which patterns and methods to use. One

common method is the use of layered software architectures. Layered architectures separate

concerns of the system by organizing the code into logical layers. These layers are then

composed into separate tiers. In general, tiers are a physical separation, and layers are a logical

separation. While tiers are a physical boundary, it is not required for them to exist on separate

servers. The ability to physically separate them; however, is the key requirement for scaling of

the system and is common in medium to large systems.

APPLYING THE REST ARCHITECTURAL STYLE 29

The first version of NFLPickem was designed using a 2-tier architecture (See Figure 4).

This is a simple and common architecture where all of the application logic is on one tier and the

data is on another.

Figure 4. Original 2-Tier Architecture Diagram by, Brian Henry (2011)

The Application Tier was organized in three logical layers. The three layers of the application

tier are as follows: the presentation layer, business logic layer, and the data access layer. The

presentation layer is also commonly called the user interface. The user interface is responsible

for the processing required to display data and to handle user input. For the NFLPickem system,

this is the Web pages, which make up the user interface. The business logic layer is designed to

encapsulate all of the application business logic. By separating the business layer, we can

achieve cleaner separation of duties, improve testability, and extend the system through code

reuse. Finally, the data access layer is responsible for all of the Create, Replace, and Update,

Delete, and (CRUD) activities. The data access layer interacts directly with the data tier and its

persistent storage to execute the necessary data storage requests.

In most enterprise applications, the supporting data is physically separate from the

application itself. We see this separation in traditional client-server environments where the

Application Tier

Presentation Layer (User Interface)

Business Logic Layer (Business Objects)

Data Access Layer (Data Access Objects)

Data Tier

Persistent Storage

(Database)

APPLYING THE REST ARCHITECTURAL STYLE 30

application runs on the user’s desktop computer and accesses the data over the network. The

data tier is a separate database server that contains the persistent storage database. Moreover,

NFLPickem is a Web application, the application tier runs on a Web server.

3 -Tier Architecture

The second version of NFLPickem introduces a 3-tier architecture. The 3-tier

architecture separates the original application tier into two new tiers. The new presentation tier

now only consists of the User Interface (UI) components for the system, often referred to as

applications or apps. In order for the separation to be possible, the original application had to be

designed in way that allows for the introduction of this new abstraction or boundary. To achieve

this separation a new logical services layer was added as an abstraction of the business logic

layer. Abstraction allows for the physical separation of the presentation tier. The layered design

of the original 2-tier architecture is the primary enabler for this decoupling (See Figure 5).

Three-tier architectural design achieves the primary goal of a service-oriented architecture,

which is the supporting architecture that enables a system to provide loosely coupled services to

remote consumers or clients.

APPLYING THE REST ARCHITECTURAL STYLE 31

Figure 5. 3-Tier Architecture Diagram designed by, Brian Henry (2011)

 One of the goals of 3-tier architecture is the separation of the user interface from the

database. The first step of this separation generally uses logical layers. This is an important

point because without a layered design, it is difficult, if not impossible to migrate from a 2-Tier

to a 3-Tier architecture. The practice of designing software in layers is almost a requirement for

most modern systems. This design technique is one of the simplest ways to design for future

extensibility without significant additional upfront costs. The NFLPickem system is a perfect

example of how this approach works and pays off. The first design of NFLPickem contained no

plans for RESTful services architecture or 3-Tier architecture. Nonetheless, the layered design

approach resulted in the migration to 3-tier architecture.

With the separation of tiers, the new middle tier must exist as a set of remote data,

operations, and application states. Service orientated architecture is the means by which the

data, operations, and application states are made available to remote consumers or clients. The

following sections examine 3-tier architecture. Each tier and layer plays an important role in the

Middle Tier

Service Layer (RESTful Services)

Business Logic Layer (Business Objects)

Data Access Layer (Data Access Objects)

Data Tier

Presentation Tier

Types of Applications

Windows Web RIA Mobile

New Physical Boundary

Persistent Storage

(Database)

APPLYING THE REST ARCHITECTURAL STYLE 32

overall system. A bottom-up approach will analyze NFLPickem’s 3-Tier architecture. The

bottom-up approach means that the lower tiers and layers of the system will be examined first in

a bottom-up manner. The lower tiers and layers establish the foundations of the system and

build upon one another. While the system is presented in this manner, it is not a requirement for

constructing the foundations in this order. The building of distributed software systems is not

always a linear process. Ultimately, the construction process depends on the size of the system

and the software development processes and methodologies that are used.

Data Tier

The data tier of NFLPickem is a SQL Server database where the data is stored and

retrieved. The database is comprised of physical objects such as tables, views, and stored

procedures. Tables are responsible for storing the data in structured columns. SQL Server is a

Relational Database Management System (RDBMS) which supports database object and table

relationships and constraints. The tables in NFLPickem are relational, and enforce relationships

through common relational database foreign keys. Figure 6 illustrates a design artifact called an

Entity Relationship Diagram (ERD). The primary use of the ERD is to document the system and

provide a visual design that represents the entities in the database. Six primary tables comprise

the database (User, Setting, Team, Pick, Game, and a Week).

APPLYING THE REST ARCHITECTURAL STYLE 33

Figure 6. Entity Relationship Diagram by, Brian Henry (2011)

To support data updates and retrieval, a complete set of database stored procedures were

built. Stored procedures are objects on the database that encapsulate programming logic. The

stored procedures support Create Delete Update Delete (CRUD) operations (See Figure 7). The

use of stored procedures for CRUD operations is an abstraction technique separating the objects

that retrieve and update the data from the physical tables that store the data. The addition of the

stored procedures for operations is not a requirement, but does offer another layer of separation

and control. This design choice moves some of the programming logic down a level to the data

tier.

APPLYING THE REST ARCHITECTURAL STYLE 34

Figure 7. Data Tier Database Object Diagram by, Brian Henry (2011)

Good arguments can be made for and against the use of stored procedures. The use of

stored procedures has two primary advantages. Firstly, the increased performance of the

operations against the database as data processing is generally going to be more efficient within

the RDBMS. The second advantage is the separation of control from the physical tables.

Depending of the number of physical tables, complexity, and data integrity, this approach can

leave the control of the physical data to the stored procedure objects. Essentially, this creates a

governance and control layer over the data. The primary disadvantage is the additional work

involved with maintaining the stored procedures.

Data Tier
Database Stored Procedures

Database Tables

Persistent

Storage

(Database)

APPLYING THE REST ARCHITECTURAL STYLE 35

Middle Tier

The Middle Tier consists of three layers: Service Layer, Business Logic Layer, and Data

Access Layer. The supporting architecture is based on the key design principles as defined in

Microsoft’s Architecture Guide 2
nd

 Edition. These principles are:

1. Separation of Concerns: Organize and divide the application to achieve high

cohesion and low coupling. One method of achieving this separation is to use logical

layers. Another important factor is maintaining consistency of the components of the

system.

2. Single Responsibility Principle: The components of the system should each

individually be responsible for a specific feature or task. The features can also be an

aggregation of cohesive functionality.

3. Principle of Least Knowledge: Least knowledge is known as the Law of Demeter

or LoD. Components or objects of the system should not have visibility or access to

the internals of other components or objects. This is commonly achieved through

data hiding and class member protection semantics.

4. Do not Repeat Yourself (DRY): Implement functionality in a single component and

reuse it wherever possible.

5. Minimize Upfront Design: Only design what is necessary! The upfront design

principle is a balance of current needs and future needs, commonly referred to as

YAGNI ("You ain’t goanna need it"). Applying modern engineering practices will

significantly help prepare the system for the future without significant addition design

investment.

APPLYING THE REST ARCHITECTURAL STYLE 36

The middle tier architecture is responsible for hosting the actual RESTful services. The

new service layer provides the service abstraction that transforms operations and data into Web

consumable services. Each layer in the architecture has a specific role and applies a set of design

patterns and principles. The service layer contains resources that are the actual REST services.

In Web terms, anything consumable on the network or Internet is called a resource. The

resources in the service layer use business objects from the business logic layer. In NFLPickem,

the business objects are called, “Managers.” The managers use data access services in the data

access layer, which make calls to the database stored procedures. The layer runs in a virtual

container on a separate server called an application server. The database runs on a separate

physical server as depicted in Figure 8.

Figure 8. Middle Tier Layers and Data Tier Interaction Diagram by, Brian Henry (2011)

Persistent Storage
(Database)

Persistent Storage
(Database)

Middle Tier

Service Layer
Week

Resource

Team

Resource

User

Resource

Business Logic Layer

Week

Manager

Team

Manager

User

Manager

Game

Manager

Data Access Layer

Week

Service

Team

Service

User

Service

Game

Service

Data Tier

Database Stored Procedures

Database Tables

Application Server

Database Server

APPLYING THE REST ARCHITECTURAL STYLE 37

Data Access Layer

As we continue with the bottom-up assessment, the first layer to consider is the data

access layer. The data access layer is responsible for providing access to the retrieval and

storage of the data. Since the technology that drives this layer is constantly changing, it is

important that this part of the system be decoupled from the rest of the system. By decoupling

the layer, the technology can be changed later without affecting the rest of the system. The data

access layer is most commonly involved with accessing the database. It is important to

understand; however, that the layer can be used for any data. In fact, some software

architectures call this the “resource access layer” because the layer is involved with accessing

and manipulating resources. By using simple object-oriented component interfaces, it is possible

support multiple technologies. For instance, a system might support three back-end storage

systems for the data (Oracle, SQL Server, and AS400). Each of these implementations will vary

and require different code. The use of component interfaces will abstract the core functions into

a common interface to support the underlying technology.

Often times, this layer is based on boilerplate, template, or generated code. In .NET

alone, there are 20+ viable frameworks for building this layer. One of the more popular methods

is the use of Object Relational Mapper (ORM) tools. ORM tools will reverse engineer a

database, and generate an API that programmers can use. Another common approach is to use

low level APIs to make program calls against the database. Microsoft provides a framework

called, ADO.NET for this purpose. NFLPickem uses a combination of Microsoft’s ADO.NET

and Microsoft’s Enterprise Library to execute SQL statements and stored procedures. In most

cases, a method represents each CRUD operation on the database. The method is responsible to

execute the database-stored procedure for that operation.

APPLYING THE REST ARCHITECTURAL STYLE 38

Business Logic Layer

The Business Logic Layer (BLL) is responsible for providing the business logic for the

system. The classes in this layer are referred to as business objects. The business layer is often

where much of the heavy lifting of the system occurs. The function of the managers in this layer

is to interact with the data access layer, and other sub-systems, and API’s. In its simplest form,

the layer acts as an abstraction between the presentation layer and data access layer. Depending

on the size of the system, the layer may support complex workflows and orchestration of

business objects. Furthermore, the layer is responsible for authorization, caching, error handling,

logging, and data validation.

Figure 9. The Business Layer consumed by the Service Layer, by Brian Henry (2011)

 NFLPickem uses a slim and streamlined business layer because of the use of stored

procedures on the database. Figure 9 illustrates how the business objects in the business layer

are consumed by the WeekResource service implementation. The UML depicts a “has a”

relationship between the service layer resource and the business layer. Notice that the

WeekResource has an instance of both the WeekManager and the GameManager. The

WeekResource needs both business objects to implement the service interface contract.

+GetWeeks() : Week[]

+GetWeek() : Week

+GetGamesForWeek() : Game[]

+GetGame() : Game

+SaveGame()

«interface»

IWeekResource

Decoupled Service

Interface

+GetWeeks() : Week[]

+GetWeek() : Week

+GetGamesForWeek() : Game[]

+GetGame() : Game

+SaveGame()

WeekResource

«bind»

Decoupled Service

Implementation

+GetWeeks() : Week[]

+GetWeek() : Week

WeekManager

1
1

+GetGamesForWeek() : Game[]

+GetGame() : Game

+SaveGame()

GameManager

1
1

Business Layer

Objects

APPLYING THE REST ARCHITECTURAL STYLE 39

Service Layer

The Service Layer is responsible for exposing the consumable REST services of the

system. NFLPickem uses Microsoft’s Windows Communication Foundation (WCF) as the

primary framework for this layer. Best practices for WCF call for the use of a Decoupled

Contract pattern. With this pattern, the service contract is defined as a separate physical

interface that is decoupled from the actual service implementation. The physical interface allows

the interface to be designed independently. According to Erl (2009), “service inventories based

on the use of contracts that support industry standards are considered to have the greatest

freedom for long-term governance and vendor diversification” (p. 403).

It is important to point out that the decoupled contract pattern comes in various forms.

Contract patterns includes different types of service contract description documents, such as

WSDL, XML Schema, WS-Policy definitions, and the use of object-oriented programming

techniques. The decoupled contract usage here is the separation of the interface and

implementation class using object-oriented programming techniques. Illustration of the object

relationship using a UML class diagram demonstrates decoupling in Figure 10.

Figure 10. Decoupled Service Contract UML Diagram by, Brian Henry (2011)

+GetWeeks() : Week[]

+GetWeek() : Week

+GetGamesForWeek() : Game[]

+GetGame() : Game

+SaveGame()

«interface»

IWeekResource

Decoupled Service

Interface

+GetWeeks() : Week[]

+GetWeek() : Week

+GetGamesForWeek() : Game[]

+GetGame() : Game

+SaveGame()

WeekResource

«bind»

Decoupled Service

Implementation

APPLYING THE REST ARCHITECTURAL STYLE 40

The service interface and decoupled implementation together make up the service. The

service consists of operations that are consumed via URI’s that are invoked over HTTP using

standard HTTP verbs. Each operation consists of a URI template, HTTP Verb, service

operation, and data contract. The important information is defined in the service interface (See

Figure 11) through method signatures and attributes. Method signatures are method operation

definitions that exist in the interface; however, they do not include any implementation code.

Attributes are a declarative technique for adding and extending behavior of assemblies, classes,

types, and methods.

Figure 11. Service Layer Resource Operations by, Brian Henry (2011)

Building the service interface establishes the service contract’s URI scheme, operations,

and data. The second step is to build the implementation of the service interface. There are

several ways to design and build the service. NFLPickem uses several basic design patterns and

principles for the implementation. The goal is to apply patterns and practices that adhere to key

Week Resource

Http Verb = GET
UriTemplate = ""
Week[] GetWeeks();

Http Verb = GET
UriTemplate = "{weekId}"
Week GetWeek(int weekId);

Http Verb = GET
UriTemplate = "{weekId}/games"
Game[] GetGamesForWeek(int weekId);

Http Verb = GET
UriTemplate = "{weekId}/games/{gameId}"
Game GetGame(int weekId, int gameId);

Http Verb = PUT
UriTemplate = "{weekId}/games/{gameId}"
void SaveGame(int weekId, int gameId, Game game);

Service Layer

APPLYING THE REST ARCHITECTURAL STYLE 41

design principles. The implementation is essentially the code that supports the service interface.

The service implementation has two primary purposes. Firstly, the service implementation must

expose the appropriate business layer object’s operations and data as a RESTful service. The

second purpose provides for common error handling and logging. This results in a simple and

repeatable service operation implementation pattern.

Figure 12. WeekResource (GetWeeks) Operation Code Listing by, Brian Henry (2011)

 Figure 12 is the service implementation code for the GetWeeks operation. Line 6 of the

code listing shows how the operation is delegated to the business logic layer. It is important to

note that no business logic is present in this method. Not having business logic in the service

layer is part of the layering pattern. By consistently following this layering pattern, we are able to

reuse the business layer in other ways in the future. If a situation occurs where multiple business

layer objects are required to fulfill an operation, a new abstracted business component interface

can be added in the business layer. Another important role of the service implementation code is

error handling. Figure 12 illustrates how the call to the business layer is wrapped in an exception

block for proper error handling. If an exception does occur, a special exception handler will

return the correct HTTP status code. In addition to the status code, a special Resource Error

class is sent that contains details about the error.

1. public Week[] GetWeeks()
2. {
3. Week[] result = null;
4. try
5. {
6. result = WeekManager.GetWeeks();
7. }
8. catch (Exception ex)
9. {
10. //Exception Handler will return the correct HTTP status code
11. //and will return a custom ResourceError xml document in the HTTP body
12. ExceptionHandler.HandleException(ex);
13. }
14. return result;
15. }

APPLYING THE REST ARCHITECTURAL STYLE 42

Consuming REST Resources

The primary goal of building REST services is to make them available for consumption

on the network or Internet. Consuming the resources over HTTP is a simple and common

process. Every modern programming language and scripting environment offers ways to

consume resources over HTTP. For popular environments such as Java and .NET, there are

dozens of good frameworks to choose from. As we consider that there are few strict standards

concerning REST, most of the frameworks aim to simplify working with HTTP messages.

These frameworks often will have support for security features, data serialization, and access to

HTTP headers.

The most known HTTP client application is the modern Web browser. The most

common use of the Web browser is to render HTML documents from the Web. Most browsers

will handle other resource representations, such as text, json, image files, and XML. The

NFLPickem REST resources use the XML representation format. The client application that

consumes the resources can be of many different forms. These include a console application,

mobile application, Web application, rich-Internet application. The ability to consume resources

without restriction to technology or physical boundaries is extremely powerful.

Figure 13. Simple REST Client Console Application by, Brian Henry (2011)

APPLYING THE REST ARCHITECTURAL STYLE 43

Windows Communication Foundation

Much of the system design has focused on how the services are built and composed. At

the end of the day, the services need a host environment to run inside. Ottinger (2008) stated,

“The application server contains a software framework that provides the environment where

applications can run effectively no matter what the applications are or what they perform” (p. 1).

Internet Information Services (IIS) offers the application server environment and WCF provides

the SOA infrastructure that supports the REST SOA in .NET. Windows Communication

Foundation (WCF) is designed to offer a manageable approach to distributed computing, broad

interoperability, and direct support for service orientation. WCF simplifies development of

connected applications through a new service-oriented programming model (Microsoft, What is

Windows Communication Foundation, p. 1).

WCF offers facilities for SOA, interoperability, metadata, data contracts, and security. In

addition to standard features, WCF has powerful extensibility points. These extensibility points

are the key to harnessing the framework for creating REST services architecture. NFLPickem

exploits three extensibility points of the WCF communications framework (See Figure 14). The

first extensibility point is the WebHttpBinding, which is a binding that Microsoft provides for

handling HTTP requests in WCF. Bindings are objects that describe the communication details

required to connect to an endpoint. NFLPickem uses the WebHttpBinding to configure

endpoints for Web services that use HTTP requests instead of SOAP messages.

Figure 14. WCF REST Framework, by Brian Henry (2011)

IIS (Running on a Windows Server)

WCF

WebHttpBinding

Custom Behaviors

WebServiceHost

APPLYING THE REST ARCHITECTURAL STYLE 44

The second extensibility point is the use of custom behaviors. For NFLPickem, several

new custom behaviors were added for security, HTTP handling, error handling, and context

enhancement. NFLPickem is designed to support four authentication schemes (None, Basic,

Token, and Windows). These schemes are hooked to the service as a custom behavior. A custom

behavior is created for inspecting and processing the HTTP headers for call context information;

this is referred to as claims. NFLPickem’s services use Dependency Injection to inject exception

handlers, loggers, and business objects into the service’s implementation. The injecting of

dependencies in this way is known as Inversion of Control (IoC).

NFLPickem uses Microsoft’s unity framework for dependency injection. The unity

container is attached via a custom behavior. Ultimately, each of the behaviors is interested in the

HTTP call context. When receiving the HTTP request, WCF reads the request and prepares the

context that is available for the life of the call. The behaviors interrogate and enhance the

context for the downstream processes to use, operate on, and make logical decisions. For

instance, the security behavior’s responsibility is to authenticate the caller and attach the caller’s

identity. Downstream code can use the caller’s information to authorize the caller on the

resource operations and reject unauthorized callers.

The final extension is a custom Web Service Host to host the RESTful service. WCF

allows services to be hosted several ways. The first way is to host the service in IIS, which runs

the hosts service in the IIS Web server. A service can also be self-hosted, which means that it is

hosted inside a .NET managed application. The managed application can take several forms

such as a Windows console application, WinForms application, or a Windows service

application. In either case, WCF offers a framework to customize the WCF host that hosts the

service. Customization is achieved by extending one of the base service host classes that

APPLYING THE REST ARCHITECTURAL STYLE 45

Microsoft provides. Customization results in a new service host with fine control over all of the

extensibility points.

Endpoints and Messaging

Services in Windows Communication Foundation are exposed through service endpoints.

Microsoft (2011) stated that, “Each endpoint consists of four properties: An address that

indicates where the endpoint can be found; A binding that specifies how a client can

communicate with the endpoint; A contract that identifies the operations available; A set of

behaviors that specify local implementation details of the endpoint” (p. 1). The service has a

unique address, called the root or base URI. The root URI uniquely identifies the service, and no

two services can share the same root URI.

Figure 15. WCF Service Endpoints by, Brian Henry (2011)

When a message is received by IIS and routed to WCF, the URI is interrogated and

routed to the correct service based on the root URI. The request is then routed to the correct

handler. Microsoft provides method annotations for routing requests, called the URI template.

The URI template is not part of the root URI. For instance, assume that NFLPickem is hosted at

http://www.domain.com. The weeks resources root URI would be

IIS (Running on a Windows Server)

ServiceHost (subclass of WCF WebServiceHostFactory)

RESTful Web Service (Set of operations)

Operation Operation Operation Operation

Service Endpoint

(Root URI)

http://www.domain.com/

APPLYING THE REST ARCHITECTURAL STYLE 46

http://www.domain.com/weeks. Figure 16 illustrates HTTP routing of the message based on the

URI of the request.

Figure 16. HTTP Message Routing Diagram by, Brian Henry (2011)

 After the service receives the request, the URI is parsed and matched to a matching URI

template. The URI template pattern matching also accepts parameters as part of the URI. Figure

17 illustrates the code for the Weeks resource, service interface. The interface illustrates URI

template mapping to the method signature, and the required parameters for each operation. Each

method is marked with an OperationContract annotation and with a WebGet or WebInvoke

annotation. The Operation Contract tells WCF that the method is part of the service interface.

The WebGet and WebInvoke tell WCF what operation should handle the request. WebGet is

used for an HTTP GET and WebInvoke is used for an HTTP PUT and POST.

IIS

ServiceHost

RESTful Web Service

ServiceHost

RESTful Web Service

ServiceHost

RESTful Web Service

Http Message

Http Client

http://www.domain.com/weeks/

Weeks Resource

Internet/Network boundary

http://www.domain.com/weeks

APPLYING THE REST ARCHITECTURAL STYLE 47

Figure 17. Week Resource Service Interface Code Listing by, Brian Henry (2011)

When speaking in terms of the Web, every request is for a specific resource and its

representation. According to Fielding (2009), “All REST interactions are stateless; therefore,

request contains all the information for a connector to understand the requests that are

independent of any requests that may have preceded it” (2000, p. 93). The way the service is

composed, hosted, routed, and processed is all part of the underlying framework. WCF is one of

many frameworks that offer these services. Microsoft has simply extended WCF to include a

Web model that allows designers to build RESTful services. As with many frameworks, the use

of them will also impose constructs. For example, the composition of resources through

annotated service operations is merely a WCF construct. The consumer of the service would not

assume or care if any logical construct is present or not. To the consumer, each request is for a

unique resource. The routing process is of no concern.

namespace NFLPickem.Svc
{
 [ServiceContract]
 [XmlSerializerFormat]
 public interface IWeekResource
 {
 [OperationContract]
 [WebGet(UriTemplate = "")]
 Week[] GetWeeks();

 [OperationContract]
 [WebGet(UriTemplate = "{weekId}")]
 Week GetWeek(string weekId);

 [OperationContract]
 [WebGet(UriTemplate = "{weekId}/games")]
 Game[] GetGamesForWeek(string weekId);

 [OperationContract]
 [WebGet(UriTemplate = "{weekId}/games/{gameId}")]
 Game GetGame(string weekId, string gameId);

 [OperationContract]
 [WebInvoke(Method = "PUT", UriTemplate = "{weekId}/games/{gameId}")]
 void SaveGame(string weekId, string gameId, Game game);
 }
}

APPLYING THE REST ARCHITECTURAL STYLE 48

Security

Secure computing is a core requirement for almost any system. The system needs to be

able to handle the traditional security demands of protecting information and enforcing proper

authentication, and authorization. According to Weber, Parastatidis, and Robinson (2010),

“there are four core pillars of secure computing; confidentiality, integrity, identity, and trust” (p.

285). Confidentiality keeps information private while in transit or in storage. Integrity prevents

information from changing undetectably. Identity authenticates the parties involved in an

interaction. Trust authorizes a party to interact with a system in a prescribed manner (Webber,

Parastatidis, & Robinson, 2010, p. 285).

HTTP natively supports some basic authentication and authorization mechanisms. When

a protected resource is requested, the requestor can be required to present credentials in the

Authorization header of the HTTP message. If the credentials are not valid, the request is

refused and an unauthorized status code is returned; this pattern is typical of secure Web

computing. Security is a vast topic in any computing context and it is difficult to cover all

aspects. The RESTful services architecture for NFLPickem focuses on proper authentication of

the consumer. The system supports four authentication types:

1. None – This type effectively disables security and allows anonymous callers.

2. Basic – A popular and widely used authentication method where the username and

password are base64-encoded and sent in the authorization header.

3. Windows – Uses the user’s Windows credentials. It is a proprietary type of security

that is supported on Window’s systems.

APPLYING THE REST ARCHITECTURAL STYLE 49

4. Token – The token security type is a custom authentication method that was

developed specifically for this research. The token method is based on a secret

shared key exchange between the client and server.

Measuring REST

If REST is an architectural style with constraints, how do we know when we have

achieved true RESTfulness? Do all of the REST constraints have to be present? Without

standards, who gets to decide what is or is not REST? These questions are commonly asked

about REST. Fortunately, we have some guidance from the Richardson Maturity Model

developed by Leonard Richardson. His model is a useful guide for measuring the maturity level

of a REST-based system. Richardson recognizes four levels of maturity (See Figure 18).

 Figure 18. The Richardson Maturity Model (Fowler, 2010). Retrieved from,

 http://martinfowler.com/articles/richardsonMaturityModel.html

Level 0 - Level zero uses HTTP as a transport protocol for remote procedure calls without

using any mechanisms of the Web. “Essentially, what you are doing here is using HTTP

as a tunneling mechanism for your own remote interaction mechanism” (Fowler, 2010, p.

1).

http://martinfowler.com/articles/richardsonMaturityModel.html

APPLYING THE REST ARCHITECTURAL STYLE 50

Level 1 - This level introduces Resources by separating system contexts into separate

endpoints. With Level 0, all calls would be made to a singular endpoint using a Remote

Procedure Call (RPC) convention.

Level 2 - Level 2 starts to use HTTP as an application protocol by introducing the use of

HTTP verbs for interaction. The verb is supplied when resources are accessed as a way

of communicating the intentions of the client. The most common verbs are GET, POST,

and PUT.

Level 3 - The final level introduces Hypermedia Controls. Hypermedia is often referred to

by the acronym HATEOAS (Hypertext as the Engine of Application State). HATEOAS

expresses the valid application states to the client via hypermedia.

The REST services developed for this research reach Level 2 of the Richardson

Maturity Model. While application states are available, they are only implicitly

available. Availability means that a client or consumer can only infer or make educated

guesses about how to interact with the resources. Nothing in the message exchange

communicates how to retrieve additional resources, or how to make updates to the

resource. In order to reach Level 3, adding hypertext to communicate application

semantics and states is required. Roy Fielding has made a point of the importance of

hypertext by stating that REST API’s must be hypertext-driven. On Fielding’s (2008)

personal blog, he offers some interesting commentary:

What needs to be done to make the REST architectural style clear on the notion

that hypertext is a constraint? In other words, if the engine of application state

(and hence the API) is not being driven by hypertext, then it cannot be RESTful

and cannot be a REST API. Period. Is there some broken manual somewhere

APPLYING THE REST ARCHITECTURAL STYLE 51

that needs to be fixed? (retrieved from http://roy.gbiv.com/untangled/2008/rest-

apis-must-be-hypertext-driven).

In his blog entry, Fielding expresses his annoyance when he asks, “What needs to be

done to make the REST architectural style clear on the notion that hypertext is a constraint?” It

is interesting; however, that hypertext-driven was not one of the original REST constraints.

These statements by Fielding emphasize the point that there has been a fair amount of confusion

around the use of hypertext. Through his assertions, Fielding appears to have elevated hypertext-

driven as a new constraint. Fielding does address some of the confusion and accepts some of the

responsibility. Fielding (2008) stated, “To some extent, people get the wrong idea about REST

because of failures to include enough detail on media type design within my dissertation – that’s

because I ran out of time, not because I thought it was less important than other aspects of

REST” (retrieved from http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven).

Conclusion

REST is a hybrid style derived from several network based architectural styles, combined

with constraints that define a uniform connector interface. The primary goal of the research was

to present and place the architectural style into practical practice. As with many IT or software

engineering disciplines, true learning and understanding come from the act of actually building

or creating something. Validation occurred through years of development of the HTTP

standards, URI elaboration, and dozens of commercial-grade software systems that were

developed independent of one another. Independent software development continues to advance

REST as an applied science.

The primary objective of the research is to apply a design-science research approach to

the building and the analyzing of RESTful services software architecture. The design-science

APPLYING THE REST ARCHITECTURAL STYLE 52

approach provided an evidenced based foundation of REST through practical application. The

software architecture is complete in design and rationale as it applies to the original REST

constraints.

 In the early stages of this paper, the value of hypermedia was overlooked. Appreciation

of hypermedia occurred later. There was a preconditioned perspective that all distributed

software is only useful once the appropriate manuals and documentation are provided to the

consumers. The preconditioned perspective was reinforced by the verbose metadata driven world

of SOAP Web services. By adding hypermedia controls, we can shift away from these

preconditions by having clients respond only to options that are presented through hypertext. As

a result much less documentation should be required.

Hypermedia is valuable; however, there is a lack of tooling to support hypertext-driven

API’s. In a sense, the author of such a system is designing a higher-level application protocol,

which requires tooling. An application protocol in this sense transfers control of the state

machine, which is the system, through hypermedia controls. This is a paradigm shift from the

traditional way that distributed software is built and consumed. Much of what we are seeing

today is a partial implementation of REST or a maturity level that falls short of the “Glory of

REST” as expressed by the Richardson Maturity Model. As the tooling improves and use of

hypermedia grows, more mature implementations will likely follow.

APPLYING THE REST ARCHITECTURAL STYLE 53

References

Erenkrantz, J. R., Gorlick, M. M., Suryanarayana, G., & Taylor, R. N. (2007, September 3-7).

 From Representations to Computations: The Evolution of Web Architectures.

 ESEC/FSE’07 , 255-264.

Erl, T. (2009). SOA Design Paterns. Boston: Pearson Education.

Fielding, R. T. Architectural Styles and the Design of Network-based Software Architectures.

 UNIVERSITY OF CALIFORNIA, IRVINE, Irvine.

Fielding, R. T., & Taylor, R. N. (2002). Principled Design of the Modern Web Architecture.

 ACM Transactions on Internet Technology , 2 (2), 115-150.

Fielding, R., & et, a. (1999, June). Hypertext Transfer Protocol -- HTTP/1.1.

Flanders. (2008). RESTful .NET. Sebastopol: O'reilly Media, Inc.

Fowler, M. (2010). Richardson Maturity Model. Retrieved from,

 http://martinfowler.com/articles/richardsonMaturityModel.html.

Garlan, D., & Shaw, M. (1996). Software Architecture: Perspectives on an Emerging Discipline.

 Prentice Hall.

Hevner, A. R. (2004). Design Science In Information Systems Research. MIS Quarterly , 28 (1),

 75-105.

Microsoft. (n.d.). Endpoints: Addresses, Bindings, and Contracts. Retrieved August 2011, from

 msdn.com: http://msdn.microsoft.com/en-us/library/ms733107.aspx

Microsoft. (2009). Microsoft Application Architecture Guide, 2nd Edition.

Microsoft. (n.d.). What is Windows Communication Foundation. Retrieved August 2011, from

 MSDN: http://msdn.microsoft.com/en-us/library/ms731082(v=vs.90).aspx

http://martinfowler.com/articles/richardsonMaturityModel.html

APPLYING THE REST ARCHITECTURAL STYLE 54

Ottinger, J. (2008, Septemner). What is an App Server? Retrieved August 2011, from The Server

 Side: http://www.theserverside.com/news/1363671/What-is-an-App-Server

Pautasso, C., Zimmermann, O., & Leymann, F. (2008, April 21-25). RESTful Web services vs.

 “Big” Web services: Making the Right Architectural Decision. WWW , 805-814.

Schepers, T., Lacob, M., & Van Eck, P. (2008). A lifecycle approach to SOA gevernance.

 Retrieved from ACM Digital Library (Nov. 2010) , 1055-1061.

Scribner, K., & Seely, S. (2009). Effective REST services via .NET. Westford: Pearson

 Education, Inc.

Stal, M. (2006). Using Architectural Patterns and Blueprints for Service-Oriented Architecture.

 IEEE Software , 54-61.

Thomas Erl. (n.d.). p. 1. Retrieved May 2011, from Thomas Erl's Profile Site:

 http://www.thomaserl.com

Vinoski, S. (2002, July-August). Putting the "Web" into Web services. IEEE Internet Computing

 , pp. 90-92.

Vinoski, S. (2007). REST Eye for the SOA Guy. IEEE Internet Computing , 82-84.

W3C. (2007). SOAP Version 1.2 Part 1: Messaging Framework (Second Edition).

Retrieved from http://www.w3.org/TR/soap12-part1/

W3C. (n.d.). Retrieved May 2, 2011, from World Wide Web Consortium: http://www.w3.org

Webber, J., Parastatidis, S., & Robinson, I. (2010). REST in Practice. Sebastopol: O'Reilly

 Media, In.

Zachman, J. A. (1987). A Framework for Information Systems Architecture. IBM Systems

 Journal , 26 (3).

